Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Front Vet Sci ; 9: 923792, 2022.
Article in English | MEDLINE | ID: covidwho-20236162

ABSTRACT

Introduction: Diarrhea is the second most common cause of mortality in shelter kittens. Studies examining prevention strategies in this population are lacking. Probiotics are of particular interest but studies in cats are largely limited to healthy adults or those with induced disease. Only one study in domestic cats describes the use of host-derived bacteria as a probiotic. We previously identified Enterococcus hirae as a dominant species colonizing the small intestinal mucosa in healthy shelter kittens. Oral administration of a probiotic formulation of kitten-origin E. hirae (strain 1002-2) mitigated the increase in intestinal permeability and fecal water loss resulting from experimental enteropathogenic E. coli infection in purpose-bred kittens. Based on these findings, we hypothesized that administration of kitten-origin E. hirae to weaned fostered shelter kittens could provide a measurable preventative health benefit. Methods: We conducted a randomized, placebo-controlled, blinded clinical trial to determine the impact of a freeze-dried E. hirae probiotic on body weight gain, incidence of diarrhea, carriage of potential diarrheal pathogens, and composition of the intestinal microbiota in weaned fostered shelter kittens. Results: One-hundred thirty kittens completed the study. Fifty-eight kittens received the probiotic and 72 received the placebo. There were no significant differences in age, weight upon initiation of the study, number of days in the study, average daily gain in body weight, or weight at completion of the study. Kittens treated with E. hirae were 3.4 times less likely to develop diarrhea compared to kittens treated with placebo (odds ratio = 0.294, 95% CI 0.109-0.792, p = 0.022). A significant impact of E. hirae was not observed on the presence or abundance of 30 different bacterial, viral, protozoal, fungal, algal, and parasitic agents in feces examined by qPCR. With exception to a decrease in Megamonas, administration of the E. hirae probiotic did not alter the predominant bacterial phyla present in feces based on 16S rRNA gene amplicon sequencing. Discussion: Decreased incidence of diarrhea associated with preventative administration of E. hirae to foster kittens supports a rationale for use of E. hirae for disease prevention in this young population at high risk for intestinal disease though additional studies are warranted.

2.
Front Oral Health ; 3: 886341, 2022.
Article in English | MEDLINE | ID: covidwho-20233735

ABSTRACT

Hypothesis and objective: The oral and digestive tract microbial ecosystem has sparked interest because of its impact on various systemic diseases and conditions. The oral cavity serves not only as a reservoir for many potentially virulent microbiota but also as an important entry point and portal to the human body system. This is especially significant in the transmissibility of the virulent current pandemic virus SARS-CoV-2. The oral and digestive microbiome influences the inflammatory burden and effectiveness of the immune system and serves as a marker of activity of these host processes. The host immune response plays a role in infection susceptibility, including SARS-CoV-2. The purpose of this study is to investigate the role of specific salivary oral microbiome in susceptibility to SARS-CoV-2 infection. Methods and results: One hundred six subjects of known medical and dental history who consented to provide saliva samples between January 2017 and December 2019 were included in this study. Sixteen had become COVID-19 positive based on the PCR test by 3/01/2021. A comparison of oral microbiome bacteria taxa profiles based on 16S rRNA sequencing revealed differences between the two groups in this pilot study. Conclusions: These bacteria taxa may be markers of increased susceptibility to SARS-CoV-2 infection in the unvaccinated population.

3.
J Med Virol ; 95(2): e28445, 2023 02.
Article in English | MEDLINE | ID: covidwho-2266432

ABSTRACT

Emerging evidence suggests the oral and upper respiratory microbiota may play important roles in modulating host immune responses to viral infection. As the host microbiome may be involved in the pathophysiology of coronavirus disease 2019 (COVID-19), we investigated associations between the oral and nasopharyngeal microbiome and COVID-19 severity. We collected saliva (n = 78) and nasopharyngeal swab (n = 66) samples from a COVID-19 cohort and characterized the microbiomes using 16S ribosomal RNA gene sequencing. We also examined associations between the salivary and nasopharyngeal microbiome and age, COVID-19 symptoms, and blood cytokines. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection status, but not COVID-19 severity, was associated with community-level differences in the oral and nasopharyngeal microbiomes. Salivary and nasopharyngeal microbiome alpha diversity negatively correlated with age and were associated with fever and diarrhea. Oral Bifidobacterium, Lactobacillus, and Solobacterium were depleted in patients with severe COVID-19. Nasopharyngeal Paracoccus was depleted while nasopharyngeal Proteus, Cupravidus, and Lactobacillus were increased in patients with severe COVID-19. Further analysis revealed that the abundance of oral Bifidobacterium was negatively associated with plasma concentrations of known COVID-19 biomarkers interleukin 17F and monocyte chemoattractant protein-1. Our results suggest COVID-19 disease severity is associated with the relative abundance of certain bacterial taxa.


Subject(s)
COVID-19 , Microbiota , Humans , SARS-CoV-2 , Nasopharynx , Patient Acuity
4.
Emerg Infect Dis ; 29(2): 444-446, 2023 02.
Article in English | MEDLINE | ID: covidwho-2255024

ABSTRACT

Nocardia neocaledoniensis is a rare species of Nocardia bacteria, identified in 2004 in hypermagnesian ultramafic soil of New Caledonia. Culture of this opportunistic pathogen from spinal biopsy samples confirmed N. neocaledoniensis spondylodiscitis in an immunocompromised man. Isolation of this unusual species from spinal biopsy samples illustrates its underappreciated ability to cause invasive infection.


Subject(s)
Discitis , Nocardia Infections , Nocardia , Humans , Male , Discitis/diagnosis , Nocardia/genetics , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Bacteria , RNA, Ribosomal, 16S
5.
Front Cell Infect Microbiol ; 12: 966361, 2022.
Article in English | MEDLINE | ID: covidwho-2268729

ABSTRACT

Imposition of social and health behavior mitigations are important control measures in response to the coronavirus disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Although postulated that these measures may impact the human microbiota including losses in diversity from heightened hygiene and social distancing measures, this hypothesis remains to be tested. Other impacts on the microbiota and host mental and physical health status associations from these measures are also not well-studied. Here we examine changes in stool and oral microbiota by analyzing 16S rRNA gene sequence taxonomic profiles from the same individuals during pre-pandemic (before March 2020) and early pandemic (May-November 2020) phases. During the early pandemic phase, individuals were also surveyed using questionnaires to report health histories, anxiety, depression, sleep and other lifestyle behaviors in a cohort of predominantly Caucasian adults (mean age = 61.5 years) with the majority reporting at least one underlying co-morbidity. We identified changes in microbiota (stool n = 288; oral n = 89) between pre-pandemic and early pandemic time points from the same subject and associated these differences with questionnaire responses using linear statistical models and hierarchical clustering of microbiota composition coupled to logistic regression. While a trend in loss of diversity was identified between pre-pandemic and early pandemic time points it was not statistically significant. Paired difference analyses between individuals identified fewer significant changes between pre-pandemic and early pandemic microbiota in those who reported fewer comorbidities. Cluster transition analyses of stool and saliva microbiota determined most individuals remained in the same cluster assignments from the pre-pandemic to early pandemic period. Individuals with microbiota that shifted in composition, causing them to depart a pre-pandemic cluster, reported more health issues and pandemic-associated worries. Collectively, our study identified that stool and saliva microbiota from the pre-pandemic to early pandemic periods largely exhibited ecological stability (especially stool microbiota) with most associations in loss of diversity or changes in composition related to more reported health issues and pandemic-associated worries. Longitudinal observational cohorts are necessary to monitor the microbiome in response to pandemics and changes in public health measures.


Subject(s)
COVID-19 , Microbiota , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Middle Aged , Pandemics , RNA, Ribosomal, 16S/genetics , SARS-CoV-2/genetics
6.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2253656

ABSTRACT

Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.


Subject(s)
Microbiota , Virus Diseases , Male , Female , Humans , RNA, Ribosomal, 16S/genetics , Genes, rRNA , Nasopharynx/microbiology , Microbiota/genetics , Bacteria/genetics , Aging , Virus Diseases/genetics
7.
Biol Res Nurs ; : 10998004221124273, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2241513

ABSTRACT

CONTEXT: Depression is prevalent among Asian Americans (AsA) during the COVID-19 pandemic, and depression often leads to sleep disturbance in this population. The gut microbiota (GM) plays a critical role in mental health and sleep quality, and the composition of the GM is largely unknown among AsA. OBJECTIVES: Examine associations of the GM with depressive symptoms and sleep disturbance among Chinese and Korean American immigrants. METHODS: Depressive symptoms (PROMIS Short Form-Depression) and sleep quality (Pittsburgh Sleep Quality Index [PSQI]) were collected via surveys. PROMIS measure T-score > 55 indicates positive depressive symptoms, and a total PSQI score > 5 indicates sleep disturbance. 16S rRNA V3-V4 gene regions were sequenced from fecal specimens to measure GM. Permutational multivariate analysis of variance and linear discriminant analysis effect size were applied to examine associations of the GM with symptoms. RESULTS: Among 20 participants, 55% (n = 11) reported depressive symptoms and 35% (n = 7) reported sleep disturbance. A higher α-diversity was marginally associated with lower depressive symptoms: Chao1 (r = -0.39, p = 0.09) and Shannon index (r = -0.41, p = 0.08); ß-diversity distinguished participants between categories of depressive symptoms (weighted UniFrac, p=0.04) or sleep disturbance (Jaccard, p=0.05). Those with depressive symptoms showed a higher abundance of Actinobacteria, while those without depressive symptoms had a higher abundance of Bacteroidetes. No significant taxa were identified for sleep disturbance. CONCLUSIONS: Gut microbial diversity showed promising associations with depressive symptoms and sleep disturbance among Chinese and Korean immigrants. Specific taxa were identified as associated with depressive symptoms. Future studies with a larger sample size are warranted to confirm our findings.

8.
Emerg Microbes Infect ; 12(1): e2165970, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2228536

ABSTRACT

The development of novel culture-independent techniques of microbial identification has allowed a rapid progress in the knowledge of the nasopharyngeal microbiota and its role in health and disease. Thus, it has been demonstrated that the nasopharyngeal microbiota defends the host from invading pathogens that enter the body through the upper airways by participating in the modulation of innate and adaptive immune responses. The current COVID-19 pandemic has created an urgent need for fast-track research, especially to identify and characterize biomarkers to predict the disease severity and outcome. Since the nasopharyngeal microbiota diversity and composition could potentially be used as a prognosis biomarker for COVID-19 patients, which would pave the way for strategies aiming to reduce the disease severity by modifying such microbiota, dozens of research articles have already explored the possible associations between changes in the nasopharyngeal microbiota and the severity or outcome of COVID-19 patients. Unfortunately, results are controversial, as many studies with apparently similar experimental designs have reported contradictory data. Herein we put together, compare, and discuss all the relevant results on this issue reported to date. Even more interesting, we discuss in detail which are the limitations of these studies, that probably are the main sources of the high variability observed. Therefore, this work is useful not only for people interested in current knowledge about the relationship between the nasopharyngeal microbiota and COVID-19, but also for researchers who want to go further in this field while avoiding the limitations and variability of previous works.


Subject(s)
COVID-19 , Microbiota , Humans , Pandemics , Nasopharynx , Nose
10.
BMC Microbiol ; 22(1): 274, 2022 11 14.
Article in English | MEDLINE | ID: covidwho-2115637

ABSTRACT

BACKGROUND: Dozens of studies have demonstrated gut dysbiosis in COVID-19 patients during the acute and recovery phases. However, a consensus on the specific COVID-19 associated bacteria is missing. In this study, we performed a meta-analysis to explore whether robust and reproducible alterations in the gut microbiota of COVID-19 patients exist across different populations. METHODS: A systematic review was conducted for studies published prior to May 2022 in electronic databases. After review, we included 16 studies that comparing the gut microbiota in COVID-19 patients to those of controls. The 16S rRNA sequence data of these studies were then re-analyzed using a standardized workflow and synthesized by meta-analysis. RESULTS: We found that gut bacterial diversity of COVID-19 patients in both the acute and recovery phases was consistently lower than non-COVID-19 individuals. Microbial differential abundance analysis showed depletion of anti-inflammatory butyrate-producing bacteria and enrichment of taxa with pro-inflammatory properties in COVID-19 patients during the acute phase compared to non-COVID-19 individuals. Analysis of microbial communities showed that the gut microbiota of COVID-19 recovered patients were still in unhealthy ecostates. CONCLUSIONS: Our results provided a comprehensive synthesis to better understand gut microbial perturbations associated with COVID-19 and identified underlying biomarkers for microbiome-based diagnostics and therapeutics.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Dysbiosis/microbiology , Bacteria/genetics , Feces/microbiology
11.
Microbiol Spectr ; : e0219622, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2108228

ABSTRACT

Numerous studies have reported dysbiosis in the naso- and/or oro-pharyngeal microbiota of COVID-19 patients compared with healthy individuals; however, only a few small-scale studies have also included a disease control group. In this study, we characterized and compared the bacterial communities of pooled nasopharyngeal and throat swabs from hospitalized COVID-19 patients (n = 76), hospitalized non-COVID-19 patients with respiratory symptoms or related illnesses (n = 69), and local community controls (n = 76) using 16S rRNA gene V3-V4 amplicon sequencing. None of the subjects received antimicrobial therapy within 2 weeks prior to sample collection. Both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls. However, the microbial communities in the two hospitalized patient groups did not differ significantly from each other. Differential abundance analysis revealed the enrichment of nine bacterial genera in the COVID-19 patients compared with local controls; however, six of them were also enriched in the non-COVID-19 patients. Bacterial genera uniquely enriched in the COVID-19 patients included Alloprevotella and Solobacterium. In contrast, Mogibacterium and Lactococcus were dramatically decreased in COVID-19 patients only. Association analysis revealed that Alloprevotella in COVID-19 patients was positively correlated with the level of the inflammation biomarker C-reactive protein. Our findings reveal a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients and suggest that Alloprevotella and Solobacterium are more specific biomarkers for COVID-19 detection. IMPORTANCE Our results showed that while both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls, the microbial communities in the two hospitalized patient groups did not differ significantly from each other, indicating a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients. Besides, we identified Alloprevotella and Solobacterium as bacterial genera uniquely enriched in COVID-19 patients, which may serve as more specific biomarkers for COVID-19 detection.

12.
Exp Biol Med (Maywood) ; : 15353702221118091, 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2021036

ABSTRACT

The coronavirus (COVID-19) global pandemic has impacted the health of almost everyone, including changes in their salivary microbiota. Since 2019, there has been an increase in the number of new COVID-19 cases in Thailand. Therefore, COVID-19 active case finding is important for early detection and epidemic control. Moreover, the dynamic changes of salivary bacteriome in asymptomatic COVID-19 cases are largely unknown. This research aimed to investigate and compare the salivary bacteriome and the co-infectious bacterial pathogens in the asymptomatic COVID-19 positive group to the negative group, based on novel nanopore sequencing. This cohort was a cross-sectional study including saliva samples collected from 82 asymptomatic participants (39 COVID-19 positive and 43 COVID-19 negative cases). All samples were sequenced for the full-length bacterial 16S rDNA. The alpha and beta diversity analyses were not significantly different between groups. The three major species in salivary bacteriome including Veillonella parvula, Streptococcus mitis, and Prevotella melaninogenica were observed in both groups. Interestingly, Lautropia mirabilis was a significantly enriched species in the saliva of the asymptomatic COVID-19-positive cases based on linear discriminant analysis effect size (LEfSe) analysis. The results suggested that L. mirabilis was a co-infectious agent in the asymptomatic COVID-19 group. However, the potential role of L. mirabilis should be validated in further experimental studies.

13.
Aerobiologia (Bologna) ; 38(3): 391-412, 2022.
Article in English | MEDLINE | ID: covidwho-2007173

ABSTRACT

The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been evaluated in this study. Air samplings were performed in different rooms of the ICU ward with and without COVID-19 patients. No sample was found positive to SARS-CoV-2, according to Allplex 2019-nCoV Assay. The airborne bacterial community profiles determined by the 16S rRNA gene metabarcoding approach up to the species level were characterized by richness and biodiversity indices, Spearman correlation coefficients, and Principal Coordinate Analysis. Pathogenic and non-pathogenic bacterial species, also detected in outdoor air samples, were found in all collected indoor samples. Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and others coagulase-negative staphylococci, detected at high relative abundances in all the patients' rooms, were the most abundant pathogenic species. The highest mean relative abundance of S. pettenkoferi and C. tuberculostearicum suggested that they were likely the main pathogens of COVID-19 patients at the ICU ward of this study. The identification of nosocomial pathogens representing potential patients' risks in ICU COVID-19 rooms and the still controversial airborne transmission of the SARS-CoV-2 are the main contributions of this study. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-022-09754-7.

14.
Int J Environ Res Public Health ; 19(16)2022 08 16.
Article in English | MEDLINE | ID: covidwho-1987799

ABSTRACT

The compositional analysis of 16S rRNA gene sequencing datasets is applied to characterize the bacterial structure of airborne samples collected in different locations of a hospital infection disease department hosting COVID-19 patients, as well as to investigate the relationships among bacterial taxa at the genus and species level. The exploration of the centered log-ratio transformed data by the principal component analysis via the singular value decomposition has shown that the collected samples segregated with an observable separation depending on the monitoring location. More specifically, two main sample clusters were identified with regards to bacterial genera (species), consisting of samples mostly collected in rooms with and without COVID-19 patients, respectively. Human pathogenic genera (species) associated with nosocomial infections were mostly found in samples from areas hosting patients, while non-pathogenic genera (species) mainly isolated from soil were detected in the other samples. Propionibacterium acnes, Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and jeikeium were the main pathogenic species detected in COVID-19 patients' rooms. Samples from these locations were on average characterized by smaller richness/evenness and diversity than the other ones, both at the genus and species level. Finally, the ρ metrics revealed that pairwise positive associations occurred either between pathogenic or non-pathogenic taxa.


Subject(s)
COVID-19 , Microbiota , Bacteria , COVID-19/epidemiology , Data Analysis , Genes, rRNA , Hospitals , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
15.
Toxics ; 10(8)2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1969480

ABSTRACT

Numerous disposable plastic masks had been produced and used for preventing the worldwide COVID-19 pandemic effectively. Discarded masks are a potential source of microplastic pollution in marine ecosystems. The effect of discarded masks on offshore microorganisms is still unclear. Herein, we profiled the interaction between the microplastics released by discarded masks and marine microbes. The effects of mask quantity, time, and environment on the microplastic-related communities were determined. We characterized the bacterial communities of each group using 16S rRNA gene sequencing and metagenomic sequencing and correlated the community diversity to the physicochemical properties of seawater. We found that the diversity and richness of microflora on the surface of microplastics with different quantity and time varied significantly. Proteobacteria are the main bacteria on microplastics, and the KEGG metabolic pathway prediction shows that amino acid metabolism and carbohydrate metabolism were abundant. In addition, there was a correlation between bacterial communities and Antibiotic Resistance Ontology (ARO). We used scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques to evaluate the plastic polymer characteristics of disposable medical masks. Our research shows that disposable medical masks immersed in seawater can alter the microbial community. This study provides the most recent data and insights into the contamination of discarded masks in the marine environment.

16.
World J Microbiol Biotechnol ; 38(9): 161, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1930506

ABSTRACT

A violacein-producing bacterium was isolated from a mud sample collected near a hot spring on Kümbet Plateau in Giresun Province and named the GK strain. According to the phylogenetic tree constructed using 16S rRNA gene sequence analysis, the GK strain was identified and named Janthinobacterium sp. GK. The crude violacein pigments were separated into three different bands on a TLC sheet. Then violacein and deoxyviolacein were purified by vacuum liquid column chromatography and identified by NMR spectroscopy. According to the inhibition studies, the HIV-1 RT inhibition rate of 1 mM violacein from the GK strain was 94.28% and the CoV-2 spike RBD:ACE2 inhibition rate of 2 mM violacein was 53%. In silico studies were conducted to investigate the possible interactions between violacein and deoxyviolacein and three reference molecules with the target proteins: angiotensin-converting enzyme 2 (ACE2), HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain. Ligand violacein binds strongly to the receptor ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of -9.94 kcal/mol, -9.32 kcal/mol, and -8.27 kcal/mol, respectively. Deoxyviolacein strongly binds to the ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of -10.38 kcal/mol, -9.50 kcal/mol, and -8.06 kcal/mol, respectively. According to these data, violacein and deoxyviolacein bind to all the receptors quite effectively. SARS-CoV-2 spike protein and HIV-1-RT inhibition studies with violacein and deoxyviolacein were performed for the first time in the literature.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , HIV-1 , Indoles , Spike Glycoprotein, Coronavirus , COVID-19/metabolism , COVID-19/virology , HIV-1/metabolism , Indoles/metabolism , Indoles/pharmacology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Protein Binding , RNA, Ribosomal, 16S , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
17.
Front Microbiol ; 13: 871627, 2022.
Article in English | MEDLINE | ID: covidwho-1875419

ABSTRACT

While populations at risk for severe SARS-CoV-2 infections have been clearly identified, susceptibility to the infection and its clinical course remain unpredictable. As the nasopharyngeal microbiota may promote the acquisition of several respiratory infections and have an impact on the evolution of their outcome, we studied the nasopharyngeal microbiota of COVID-19 patients in association with baseline disease-related clinical features compared to that of patients tested negative. We retrospectively analyzed 120 nasopharyngeal pseudonymized samples, obtained for diagnosis, divided into groups (infected patients with a favorable outcome, asymptomatic, and deceased patients) and patients tested negative for SARS-CoV-2, by using Illumina-16S ribosomal ribonucleic acid (rRNA) sequencing and specific polymerase chain reaction (PCR) targeting pathogens. We first found a depletion of anaerobes among COVID-19 patients, irrespective of the clinical presentation of the infection (p < 0.029). We detected 9 taxa discriminating patients tested positive for SARS-CoV-2 from those that were negative including Corynebacterium propinquum/pseudodiphtericum (p ≤ 0.05), Moraxella catarrhalis (p ≤ 0.05), Bacillus massiliamazoniensis (p ≤ 0.01), Anaerobacillus alkalidiazotrophicus (p ≤ 0.05), Staphylococcus capitis subsp. capitis (p ≤ 0.001), and Afipia birgiae (p ≤ 0.001) with 16S rRNA sequencing, and Streptococcus pneumoniae (p ≤ 0.01), Klebsiella pneumoniae (p ≤ 0.01), and Enterococcus faecalis (p ≤ 0.05) using real-time PCR. By designing a specific real-time PCR, we also demonstrated that C. propinquum is decreased in asymptomatic individuals compared to other SARS-CoV 2 positive patients. These findings indicate that the nasopharyngeal microbiota as in any respiratory infection plays a role in the clinical course of the disease. Further studies are needed to elucidate the potential role in the clinical course of the disease of M. catarrhalis, Corynebacterium accolens, and more specifically Corynebacterium propinquum/diphteriticum in order to include them as predictors of the severity of COVID-19.

18.
Lett Appl Microbiol ; 75(2): 396-400, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1861481

ABSTRACT

The Curtobacterium genus is a member of the family Microbacteriaceae, and Curtobacterium species are recognized as plant pathogens. The aim of this study was to investigate a dubious result of species identification for an infection located on a catheter tip of a patient with Covid-19. A strain isolated from a catheter tip sample, identified by VITEK® 2 as Cronobacter spp., was submitted to polyphasic analysis: Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) using VITEK® MS, real-time polymerase chain reaction targeting dnaG gene, and 16S rRNA full gene Sanger sequencing analysis for confirmation. The strain presented negative result using qPCR and could not identified by MALDI-TOF MS. 16S rRNA full gene Sanger sequencing analysis identified the strain as Curtobacterium spp. The Gram-variable characteristic (Gram-negative instead of Gram-positive) of the isolated strain was the responsible for the misidentification by VITEK® 2 and VITEK® MS did not identify the strain. 16S rRNA full gene sequencing analysis identified the strain as Curtobacterium genus, but other complementary techniques are necessary to identify at species level.


Subject(s)
Actinomycetales , COVID-19 , Cronobacter , Actinomycetales/genetics , Bacterial Typing Techniques/methods , Catheters , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
19.
Water ; 14(8):1224, 2022.
Article in English | ProQuest Central | ID: covidwho-1810369

ABSTRACT

Onsite molecular diagnostics can revolutionize fecal pollution source tracking. We aimed to validate a method for onsite qPCR assays with a miniature speaker-sized Q qPCR instrument and other portable equipment items. We showed that marker genes for total bacteria (16S) and E. coli (rodA) in 100 mL of river water measured with this method agreed within ±0.3 log10 units with results obtained when using conventional laboratory equipment items. We then deployed the portable method in a mobile laboratory (‘lab in a van’) and quantified HF183 marker genes for human host associated Bacteroides in river water within 3 h of sampling. We also used the mobile laboratory to investigate urban river water and effluents from two storm drains and a retention pond and collected comprehensive microbial and physicochemical water quality data. We found significantly higher HF183 gene levels in the older storm drain compared to the river water (6.03 ± 0.04 vs. 4.23 ± 0.03 log10 gene copies per 100 mL), and a principal component analysis revealed that storm drain effluent retention in a pond beneficially altered water characteristics, making them more like those of the receiving river. In conclusion, onsite qPCR assays can be performed with portable equipment items to quickly test water.

20.
J Clin Med ; 11(8)2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1809954

ABSTRACT

The study objective was to evaluate chest radiographic features that distinguish Mycoplasma pneumoniae pneumonia (MPP) from other bacterial pneumonias diagnosed based on the bacterial floral analysis with 16S rRNA gene sequencing, using bronchoalveolar lavage fluid samples directly obtained from pneumonia lesions. Patients were grouped according to the dominant bacterial phenotype; among 120 enrolled patients with CAP, chest CT findings were evaluated in 55 patients diagnosed with a mono-bacterial infection (one bacterial phylotype occupies more than 80% of all phylotypes in a sample) by three authorized respiratory physicians. Among this relatively small sample size of 55 patients with CAP, 10 had MPP, and 45 had other bacterial pneumonia and were categorized into four groups according to their predominant bacterial phylotypes. We created a new scoring system to discriminate MPP from other pneumonias, using a combination of significant CT findings that were observed in the M. pneumoniae group, and age (<60 years) (MPP-CTA scoring system). When the cutoff value was set to 1, this scoring system had a sensitivity of 80%, a specificity of 93%, a positive predictive value of 73%, and a negative predictive value of 95%. Among the CT findings, centrilobular nodules were characteristic findings in patients with MPP, and a combination of chest CT findings and age might distinguish MPP from other bacterial pneumonias.

SELECTION OF CITATIONS
SEARCH DETAIL